Ion implantation chillers in semiconductor manufacturing processes
Ion implantation is an important step in semiconductor manufacturing processes to precisely dope and control the electrical properties of semiconductor materials by implanting high-energy ions into them. This process generates a lot of heat, so chillers are needed to achieve the following goals. The temperature requirements of the chillers used in the ion implantation process are set according to the specific operating conditions of the ion implantation equipment and the characteristics of the semiconductor materials being processed. Although the specific temperature setting value may vary depending on the equipment model, process flow and the doping effect sought, in general, the chiller needs to be able to provide stable low-temperature cooling to maintain the temperature of key components in the ion implantation equipment within a precise and narrow range.

Temperature Range: The chiller is generally required to be able to provide cooling capacity from ambient temperature to approximately -20°C or even lower, depending on the heat generated during the ion implantation process and the cooling requirements of the equipment. For some high-end or special applications, lower temperature control capabilities may be required.
Temperature Stability: Temperature stability is extremely critical during the ion implantation process. The chiller needs to be able to maintain the set temperature fluctuation between ±0.1℃ and ±1℃ to ensure accurate control and repeatability of the implantation process.
Fast Response: The rapid temperature change during ion implantation requires the chiller to have a fast response capability, and to be able to quickly adjust the cooling output to adapt to changes in process requirements to avoid temperature exceeding the control range.
Cooling Uniformity: The chiller also needs to ensure that the temperature of the coolant is uniform during the circulation process to avoid local overcooling or overheating, which is very important for maintaining the consistency of the internal temperature of the equipment.
Intelligent Control: Modern ion implantation chillers are usually integrated with advanced temperature control and monitoring systems, such as PID controllers, which can automatically adjust the cooling output to respond to real-time temperature changes and ensure constant cooling effect.
In summary, the temperature requirements of ion implantation chillers in semiconductor manufacturing processes emphasize low temperature, high stability and fast response capabilities, aiming to create a highly controllable temperature environment for the ion implantation process, thereby ensuring the accuracy of doping and the performance of semiconductor devices.
Semiocnductor공정 냉각기
FLT-100℃~90℃
주로 에칭 장비용으로 설계된 단일 채널 공랭식 쿨러입니다. 챔버 측벽에 독립적인 온도 제어를 제공하는 데 사용됩니다.
FLTZ -45℃~90℃
40 ℃ 이내의 가열 방식은 압축기 고온 가스 가열 완전 밀폐형 설계를 채택하고 기계는 24 시간 연속 작동 반도체 온도 제어 장치 칠러는 주로 ...
로딩 중...
이미 마지막 에피소드에 도달했습니다!
관련 권장 사항
-
-
반도체 제조 공정 중 멀티채널 냉각기가 필요한 공정은 무엇입니까? 왜 필요한가요?
1023화학 기상 증착(CVD): CVD 공정에서는 다중 채널 냉각기를 사용하여 반응 챔버 벽, 열교환기 및 가스 예열 교환기를 냉각하여 안정적인 반응 챔버 온도를 유지하여 정밀한 제어를 보장합니다.
세부 정보 보기 -
Temperature control and chillers in oxidation diffusion process
774The oxidation diffusion process is a key step in semiconductor manufacturing. It is mainly used to form precise oxide layers and doping, and has extremely strict requirements for temperature control. In this process, the chiller, as an imp...
세부 정보 보기 -